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SUMMARY 
A method to deal with an open boundary condition in the analysis of water surface waves, the tide, etc. by 
means of the finite element method is proposed in this paper. The present method has two important 
features relating to the treatment of the open boundary condition. The first feature is to consider the non- 
reflective virtual boundary condition which has been developed in the numerical wave analysis method. The 
incident wave conditions without spurious reflected waves can be imposed at the open boundary. The 
second feature is to identify the amplitude of the components of incident waves in terms of observed water 
elevations in the field of standing waves. This can be done as a parameter identification based on an 
optimization problem by applying the conjugate gradient method. The applicability of this method to wave 
propagation problems is verified by several numerical computations. 
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1. INTRODUCTION 

In the analysis of surface wave problems such as the tide by numerical methods, e.g. the finite 
element method and/or the finite difference method, an analytical domain is surrounded by both 
a land boundary and an artificial boundary which is often called the ‘open boundary’ and is 
located artificially offshore. Generalljj, the perfectly reflective condition is imposed at the land 
boundary and either the periodic water elevation or velocity is given at the open boundary in the 
conventional analysis. These conditions have been employed in a number of tidal analyses.’ - 3  In 
the analysis of the tide an unsteady analysis is usually performed because the tide is itself periodic 
with constant currents from the inflow of rivers, the influence of seasonal winds and residual flow. 
In this case it is rather incorrect to impose either the periodic water elevation or velocity at the 
open boundary. The reasons for this are the following. If the amplitude of an observed value such 
as the tide level is given at  the open boundary, progressive waves are generated and propagate 
towards the land boundary and reflect at this boundary because the initial conditions of water 
elevation and velocity are assumed to be zero. Then the reflected wave propagates towards the 
open boundary where it overlaps with the incident wave which is still entering from the open 
boundary. If the reflected wave is not able to pass through the open boundary to the outer side, 
the field of standing waves cannot be computed. The amplitude imposed at the location of the 
open boundary cannot be the same as that of the initial value. The reflected wave reflects at the 
open boundary and contaminates the solution because the amplitude is necessarily specified at 
the open boundary in the conventional analysis. There are some cases where these reflected waves 
can be negligibly small. However, it is impossible to perfectly eliminate the reflected wave, so that 
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numerical techniques are required for the open boundary treatment. To overcome this problem, 
Tanimoto and Kobune4 have applied a non-reflective virtual boundary condition at the open 
boundary in the finite difference method. The reflected waves, which are essentially unknown, can 
be obtained by computing the difference between the computed values and the incident wave at a 
few distances inside the open boundary in this method. The procedure of computation is 
successfully advanced for use in the finite element method in this 

Conventionally the analysis was performed on the assumption that the incident waves are 
known. However, it is difficult to estimate the incident wave which corresponds to the actual field 
data of the water surface wave or the tide. The incident wave can be obtained using spectral 
analysis of the surface wave field. In the analysis of the tide the incident wave is usually unknown 
because the tidal wave cannot be separated into incident and reflected components. It is 
extremely important to divide the tidal wave into incident and reflected components in order to 
predict the behaviour of the tide. The reflected wave continually changes its configuration but the 
incident wave is always unchanged. Thus, for example, for the design of a harbour or the 
prediction of tidal waves the incident wave should be imposed as the boundary condition because 
the reflected wave must be computed according to the change of configuration of the land 
boundary. A method to identify the incident wave component is shown in this paper. The 
amplitude, wave direction, period and phase lag must be known in order to identify the incident 
wave. The amplitude is dealt with as an unknown factor since the other factors can be easily 
determined in the case of tide analysis. In the method presented in this paper the identification of 
the amplitude of incident waves is carried out on the basis of the minimization of residuals 
between the computed water elevations and observed data recorded at fixed points in the flow 
field. This can be treated as an optimization problem employing the least squares method. The 
Fletcher-Reeves m e t h ~ d , ~  which is one of the conjugate gradient methods, is used to minimize 
the performance function. The formulation of this procedure is shown. The validity of this method 
of estimation is illustrated through several numerical examples. 

2. THE BASIC EQUATIONS 

A schematic diagram of the analytical domain is shown in Figure 1. The semi-infinite flow region 
l2 is divided into two parts, i.e. the inner, a,, and outer SZ,,  domains, by the so-called open 
boundary To, which is an artificial boundary. The boundary rL is the land boundary. The 
boundary ra, is the boundary located at infinity. Here and henceforth, equations are expressed 

Figure 1. Definition sketch of analytical domain 
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in indicial notation using co-ordinates X i  ( i =  1,2) and time t ,  and a standard summation 
convention with repeated indices. 

The linearized shallow water equations are employed in this paper because the purpose of this 
study is restricted to knowing how to deal with the open boundary condition. The equations of 
motion and continuity are written in the form 

aui 
at 

- + g q , i = O  in f2, 

a? -+hi, = 0 
at 

in Q 

where ui and q denote the mean velocity and water elevation respectively and h and g are the 
sea depth and gravitational acceleration respectively. The following two types of boundary 
conditions are considered. On the boundary rL the velocity is assumed to be known: 

ui=lii on rL, (3) 
where the 'hat' denotes a prescribed value on the boundary. The non-reflective incident wave 
conditions, which will be explained in detail in the next section, are imposed at the boundary r,: 

ui=Ui on To, 

q=ij  on ro, 
where the 'overbar' indicates a prescribed value by the procedure of the present method. 

3. TREATMENT OF OPEN BOUNDARY CONDITION 

The method to deal with the open boundary condition, which was originally applied by Tanimoto 
and Kobune4 to the finite difference method, is successfully advanced for use in the finite element 
method. The procedures of computation of this method are shown in this section. 

The incident wave condition is given on the open boundary to initiate the calculation in the 
analysis of the tide. It is incorrect to impose the water elevation and velocity as equal to those of 
only the incident wave, because there exist not only incident waves but also outgoing waves 
across the open boundary owing to reflection from the inner island and coastline. Such outgoing 
waves should be freely transmitted through the open boundary. Along the open boundary the co- 
ordinate n-s is located, of which n is normal to the boundary. The situation of incident waves with 
an amplitude a, and a directional angle a, together with reflected waves is shown in Figure 2. The 
velocity component in the n-direction and the water elevation can be expressed as the sum of 
incident (I) and reflected (R) components: 

It is natural to assume that u!, and q' are known variables: 

(8) 

(9) 

where k, and k, are the components of the wave number, o is the angular frequency, K is the phase 
lag and c = , , / (gh) denotes the wave velocity. 

9 u!,( no, t )  =- a, cos a, sin( knnO + k,so - o t  - K), 

q'(no, t)=a, sin(k,no +k,so -cot - IC), 

C 
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I I 

no no + An 
Distance n 

Figure 2. Open boundary 

The procedures of computation for the non-reflective boundary condition are shown by the 
following equations. The components of the reflected wave can be obtained as 

9 Aun = u:(no +An,  so) -- aI cos a, sin [ k,( no + A n )  + kssO - ot- K], (10) 
C 

iii+A' = a' cos a, sin [ k, no + kssO - o( t + A t ) - K] + Au, (11) c 

for the velocity and 

A ~ , I  = q'( no + An, so) - a, sin [ k,( no + An) + kSso - - ~ 1 ,  (12) 

(13) i j ' + A t  = a, sin [ knnO + kssO - o( t + A t )  - K] + Aq 

and for the water elevation, where Au, and Aq are the components of the reflected wave at a 
position An inside the open boundary. These components represent the differences between the 
computed standing wave and the incident wave. If the product of the wave velocity c and time 
increment A t  equals the distance An, this reflected wave will propagate to the open boundary at 
the next time step. Applying these procedures, incident wave conditions without spurious 
reflection as expressed by equations (11) and (13) can be imposed at the open boundary. The 
velocity in the s-direction can be obtained by a similar procedure to that for equations (10) 
and (1 1). 

4. FINITE ELEMENT METHOD 

The weighted residual equations are obtained by applying the conventional Galerkin method to 
the governing equations. The finite element equations can be described in the following form 
using the linear interpolation function based on the three-point triangular finite element: 

(14) 

(15) 

M a p  4 1  + H u i B  V,  = 0, 

Ma, i p  + ZuiPuBi = 0, 
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where the ‘overdot’ means differentiation with respect to time and usi and qs denote the velocity at 
the Pth node of the finite element in the ith direction and water elevation at the Pth node 
respectively. The coefficient matrices are 

Map = S, (@a@p)  H a i s  = S, (@a, i d ~ ,  I a i s  = h In, (@a, i day 

in which @ is the interpolation function for both velocity and water elevation. The two-step 
explicit finite element method’ is used for equations (14) and (15) to discretize the time function, 
which can be derived as follows: 

In equations (16)-(19), Mas denotes the lumped coefficient of Mas and Gas is the mixed coefficient, 
which is - 

Mas=eMas+(l -e)Mas, (20) 
where e is referred to as the lumping parameter. 

5. ESTIMATION OF INCIDENT WAVE COMPONENT 

The calculation in the previous section can be carried out on the assumption that all information 
about the incident waves is known. A physical quantity which can be easily observed is the tide 
elevation at various stations located along coastline. Therefore the incident wave component has 
to be estimated from the observed values. In this paper a method to estimate the incident wave 
component is also proposed. In this method the identification of the incident wave component is 
carried out on the basis of tide levels which are observed at arbitrary points in the flow field. The 
computational procedures of the estimation are shown in the section. 

The incident wave consists essentially of period, wave direction, phase lag and amplitude. In 
the usual analysis it is justifiable to consider the period, wave direction and phase lag as known 
constants. Accordingly, only the amplitude of incident waves is identified in this paper. In general, 
the tidal wave consists of a sum of harmonic waves; hence the amplitudes are expressed in the 
form 

(21) a: = {a: ,  a:, a:, . . . , a:}, 

where I denotes the incident wave component, 1 is the number of wave, n is the total number of 
waves and T denotes transposition. The observed water elevations at arbitrary points are given as 

f J t ) T = { h ( t ) 7  f ’ ( t ) ,  f3( t ) ,  . . . 7 &n(O}¶ (22) 
where ‘overtilde’ denotes an observed value, p is the number of an observation point, rn is the total 
number of observation points and t denotes time. The water elevations to be computed at 
observation points 1-m are expressed as 

V J %  t ) T =  {?,(a,, t ) ,  ?2(% t ) ,  ?,(a,, t ) ,  . . . 9 ?,(a,, t ) > .  (23) 
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The performance function expressed by the sum of squared residuals between the observed and 
computed values is assumed to estimate the amplitude on incident waves: 

Since J is a function of amplitude a,, optimization of a, is then equivalent to minimizing the least 
squares criterion (24). In estimating the amplitude a,, the number of observation points, m must 
be greater than the number of incident waves, n. 

The Fletcher-Reeves m e t h ~ d , ~  which is one of the conjugate gradient methods, is successfully 
applied to the minimization of equation (24). This method is widely employed as an optimal 
control technique in many engineering fields, The features of this method are that the com- 
putational algorithm is relatively simple and only small-size memories are required in the 
computation. The computational algorithm can be described as follows. 

1. Asssume initial amplitude a:; set allowable constant E and k=O. 
2. Compute ?:(a!, t ) ,  J(a:) and aq,/aa,. 
3. Compute aJ(a!) /aa ,  and set d!= -dJ(a:)/aa,. 
4. Determine a! which minimizes J ( a : +  aid!).  
5. Compute ak,+’=ak,+a‘;di. 
6. Compute qf+’ (a ;+’ ,  t )  and J ( a ; + l ) .  
7 .  If 1 J(a:+’) -J(ak , ) l  < E ,  then stop. 

9. Compute pi. 
8. Compute aJ(a:+l ) /au , .  

10. Compute d:+ l=  -aJ(a‘;+l)/aa,+p’;d:.  
11. Set k = k +  1 and go to step 4. 

Here k is the iteration number and E is a small number which expresses the convergence 
allowance. The flowchart is shown in Figure 3. 

The sensitivity matrix a?,(t)/aa, can be obtained by solving the equations 

Figure 3. Computational algorithm for identification 
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subjected to the boundary conditions 

9 u'.( no, t) = - cos aI sin( knnO + k,so - ot - K ) ,  
c 

q'( no, t)  = sin(k,n, + ksso - a t  - K ) .  (30) 
These equations can be easily obtained by differentiating the incident boundary conditions in 
equations (8) and (9). The step length a: is obtained by solving the equation 

T 

(31) 
-= aJ -l: ( a f t ,  d , )  [ij,,-q,(a,, t ) ]  dt+a, 1 (8 d,>' (2 d , )  dt=O. 
8% ad* 

The gradient can be calculated as 

6. NUMERICAL EXAMPLES 

Two numerical examples are shown to verify the applicability of the present method. 

Standing waves in one-dimensional channel 

Analyses of standing waves are carried out to compare the results with the analytical solutions. 
The finite element idealization of a one-dimensional channel with a constant depth of 10 m is 
shown in Figure4. The total numbers of nodal points and finite elements are 303 and 400 
respectively. On the boundaries AD and BC the normal velocities are assumed to be zero. The 
perfectly reflective condition is imposed at the boundary CD. The boundary AB is the open 
boundary at which the non-reflective condition is imposed. Two incident wave conditions as 
shown in Table I are created. 

For the computation the time increment A t  = 0-005 s and selective lumping parameter e = 0-9 
are employed. Computed results of the water elevation and velocity in each case are illustrated in 
Figures 5-8. The computed results are compared with the analytical solutions and the results 

Figure 4. Finite element idealization 

Table I. Condition of incident waves 

Amplitude (m) Angular frequency (rad s-l) 

Case 1 
Case 2 a, = 0.3, a, = 0.2 W ,  = 6,2832, = 3.1416 

a, = 0.1, a, = 00 W ,  = 6.2832 

2 

q ' =  1 a,sin(o,t). 
" = l  
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- : A N A L Y T I C A L  S O L U T I O N  

-- :CONVENTIONAL METHOD 
0 : PRESENT HETHOD 

Figure 5. Computed water elevation (Case 1) 

- : A N A L Y T I C A L  S O L U T I O N  

-- :CONVENTIONAL METHOD 
A : PRESENT HETHOO 

d 

Figure 6. Computed velocity (Case 1) 
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- : A N A L Y T I C A L  S O L U T I O N  

- - : C O N V E N T I O N A L  M E T H O D  
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0 0 

A 1  

00 
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Figure 7. Computed water elevation (Case 2) 
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941 

Figure 8. Computed velocity (Case 2) 
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obtained by the conventional method. Both water elevation and velocity computed by the present 
method are in good agreement with the analytical solutions. 

However, the results by the conventional method do not agree with the analytical solutions. 
Conventionally, the wave is computed imposing the known function at the open boundary. This 
result is called that of the conventional method. The final converged steady solution of the 
conventional method cannot be obtained. From this fact it is seen that the conventional method, 
which imposes only water elevations at the open boundary, cannot simulate the standing waves. 

The identification of the amplitude of the incident wave is performed in the previous two cases. 
In Figure 4 the full circles are the observation points of the water elevation, which can be chosen 
arbitrarily. The boundary condition and computational condition are the same as in the previous 
numerical examples. The observed water elevations which are employed in the inverse analysis 
have been obtained by the analysis previously performed. In these cases the results which should 
be identified are shown in Table I. Computed results are described as follows. 

Case I. In this case one wave amplitude is identified employing only one observed value at 
Point I (see Figure 9). The initial estimated amplitude is assumed to be zero. The transition of the 
performance function and the stage of convergence are shown in Figures 10 and 11 respectively. 
The amplitude of the incident waves can be estimated with only one iteration. 

Case 2. Two wave amplitudes are estimated in this case. The previous computational results at 
Points I and I1 (see Figures 12 and 13) are employed as the observed values. In Figures 14 
and 15 the transition of the performance function and the state of convergence respectively are 
illustrated. Two iteration cycles are required to identify the parameters in this case. 

From these results it is seen that if the water elevations obtained by the analysis previously 
performed are used as the observed values, then the identification of the amplitude can be carried 
out within a few iteration cycles. 

- 0  Point-I 

Figure 9. Time variation of water elevation at Point I 
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Figure 10. Transition of performance function J Figure 11. State of convergence of the amplitude 
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Figure 12. Time variation of water elevation at Point I 
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Figure 14. Transition of performance function J 
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Figure 13. Time variation of water elevation at Point I1 
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Figure 16. Finite element idealization of Tokyo Bay Figure 17. Configuration of water depth 
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Tide analysis of Tokyo Bay 

Simulation of the tide in Tokyo Bay is performed to verify the applicability of the present 
method in a practical problem. The identification of the amplitude is carried out on the basis of 
the observed data. The computed water elevations at each observation point and the velocities 
are compared with the observed values. The finite element idealization is shown in Figure 16. The 
total numbers of nodes and elements are 685 and 1216 respectively. The city names in this figure 
indicate the points where the tide gauge records have been observed. The configuration of Tokyo 
Bay is modelled as shown in Figure 17 with reference to the Maritime Chart of Tokyo 

For the boundary condition the perfectly reflective condition is imposed on the land boundary. 
On the open boundary, four main tidal constituents (M2, S2,  K,, 0,) which are shown in 
Table I1 are assumed. The amplitudes of these tidal constituents are estimated by the identifica- 
tion method described in Section 5. The treatment of non-reflectivity is carried out on the open 
boundary. For the computation the time increment A t  = 20 s and parameter e=0-9 are employed. 

The variations of tide level given by the Harmonic Constant Table" at each observation point 
are illustrated in Figure 20. The identification can be performed under the observed values. The 
initial estimated values of amplitude are assumed to be zero for all constituents. The transition of 
the performance function is described in Figure 18 and the state of convergence is illustrated in 
Figure 19. The four constituents of amplitude can be estimated within about three iteration 
cycles. The time variations of tide level which are computed under the above estimated amplitude 
are shown in Figure 20 with the observed tidal levels. The tide levels of the present method are in 

Table 11. Condition of incident waves 

Constituent Angular frequency (rad h- ') Phase delay (rad) 

LZ 
Z 
3 

w o  
u d  
z "  

W, = 0.5059 
ws = 0.5236 
wK = 0.2626 
wo = 0.2433 

I C M =  - 5.8398 
I C ~  = - 5.6018 
KK = - 1.3290 
KO = - 1.3211 

4 

'1' = 1 a, sin(w,t - K,). 
" = l  

0 7 c 3 i 
0 1 2 3 4 5 6  

I T E R A T I O N  COUNT 
' 0  1 2  3 4 5 6 

I T E R A T I U N  COUNT 

Figure 19. State of convergence of the amplitude Figure 18. Transition of performance function J 



SHALLOW WATER EQUATION WITH OPEN BOUNDARY CONDITION 951 

~ Funabashi 

: Observed value 

**+@+ : Computed value 

Yokohama 

' :t Kimitsu 

- 0  s ;  

9t Haneda 

Figure 20. Comparison of time variation of tide level 

quite good agreement with the observed data. The maximum water elevations at each observa- 
tion point in the case of M,-constituent are shown in Figure 21. The open and full circles denote 
the computed and observed values' respectively. The results of the present method agree well 
with the observed data. The computed velocities are compared with the measurements in the 
Charts of Tidal Stream of the Maritime Safety Agency" in Figure 22. In both the cases of 
maximum southeast stream and turning time of southeast to northwest the results of the present 
method agree well with the measurements. From the above results it is seen that the tide level and 
velocity at arbitrary points in the flow field can be predicted by the present method. 

7. CONCLUSIONS 

A new method to estimate the amplitude of incident waves in tide analysis has been proposed, 
including the method to treat an open boundary condition. The main conclusions obtained are as 
follows. 
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(1) The method which imposes the non-reflective boundary condition was successfully ob- 
tained and applied to the open boundary condition in tide analysis using the finite element 
method. 

(2) The method to identify the incident wave which has to be employed in tide analysis was 
formulated. The estimation of the amplitude of incident waves can be performed by 
minimization of the residuals between the computed and observed water elevations. 

(3) To show the adaptability of this method, several comparative studies were carried out on 
the one-dimensional channel model. The results of the present method were in good 
agreement with the analytical solutions. On the other hand, it was clarified that the 
standing waves could not be computed by the conventional method. 

(4) Applying the estimation technique to numerical examples of the tidal analysis of Tokyo 
Bay, the identification of wave amplitude could be completely performed within a few 
iteration cycles, and these estimated parameters give results which are in excellent agree- 
ment with the observed data. 

(5 )  Since the tidal wave is divided into incident and reflected waves in the present method, this 
method can easily be applied to analyse the behaviour of the tide in cases where the 
analytical domain has different configurations after several modifications of the boundary. 
This is important for practical applications to predict tidal flow. 

From the above conclusions it is seen that the present method is a useful and effective tool for 
analysing surface wave problems such as the tide. It is straightforward to extend this method not 
only to linear tidal analysis but also to general water wave problems. 
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